

The completion of a metric space

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

1 February, 2022 (at 19:43)

N.B. This has not yet been carefully proofread.
Also, the argument can be simplified.

Entrance. Fix a metric space (X, m) ; our goal is to construct its (metric) *completion* (\hat{X}, \hat{m}) .

Call a sequence $\mathbf{x} \subset X$ a *blip* if \mathbf{x} is m -Cauchy, and let Ω denote the set of blips. *Exercise:* Given blips \mathbf{x} and \mathbf{y} , the seq $[n \mapsto m(x_n, y_n)]$ is \mathbb{R} -cauchy. So

$$\mu(\mathbf{x}, \mathbf{y}) := \lim_{n \rightarrow \infty} m(x_n, y_n);$$

is well-defined, hence is a pseudo-metric on Ω .

The rest of this note will show that (Ω, μ) is a *complete* pseudo-metric space. (Once shown, the remaining argument is straightforward. Say two blips are *equivalent* if $\mu(\mathbf{x}, \mathbf{y}) = 0$, and let \hat{X} be the set of equivalence-classes. Let \hat{m} be the metric on \hat{X} arises from applying μ to representatives of the equivalence-classes. Automatically \hat{m} is a complete metric, since μ is complete (as a pseudo-metric).)

I will use $\mathbf{b}, \mathbf{x}, \mathbf{y}$ for blips; elements of Ω .

A subsequence \mathbf{x}' of a blip \mathbf{x} will be called a *subblip*; and (1a) justifies this term.

1: Proposition. Suppose \mathbf{x} is m -cauchy. Then:

- a: Each subsequence \mathbf{x}' of \mathbf{x} is m -cauchy, and $\mu(\mathbf{x}', \mathbf{x}) = 0$.
- b: Given numbers $\varepsilon_K \searrow 0$ there exists a subblip $(z_j)_{j=1}^{\infty}$ of \mathbf{x} st. $\forall K: m\text{-Diam}((z_j)_{j=K}^{\infty}) < \varepsilon_K$. \diamond

Proof. Left to reader. \spadesuit

2: Basic Lemma. Suppose $(\mathbf{y}^n)_{n=1}^{\infty} \subset \Omega$ is a sequence (not.nec μ -Cauchy) of blips. Write each \mathbf{y}^n as $(y_j^n)_{j=1}^{\infty}$. Then for each n we can drop to a subsequence of \mathbf{y}^n so that now the following holds for all N .

(Property[N]): For all $K \in [1..N]$ and all $j \geq N$:

$$3: \quad m(y_j^K, y_j^N) \leq \frac{1}{4^N} + \mu(\mathbf{y}^K, \mathbf{y}^N). \quad \diamond$$

Proof. We do this inductively on N . At stage N , for $K = 1, \dots, N-1$, we will drop to a subsequence of \mathbf{y}^K (and renumber its terms), *but* will not change the first $N-1$ terms of \mathbf{y}^K . Thus this iterative subsequencing operation does indeed leave us with subsequences after N has gone to ∞ .

At stage N : For $K = 1, 2, \dots, N-1$, let J_K be large enough that (3) holds for all $j \geq J_K$. Let

$$J := \text{Max}(N, J_1, \dots, J_{N-1}).$$

Now for K going from 1 upto and *including* N , discard all terms

$$y_N^K, y_{N+1}^K, y_{N+2}^K, \dots, y_{J-1}^K$$

from the sequence \mathbf{y}^K (and renumber). Now Property[N] holds. Further dropping to subsequences at later stages will preserve Property[N]. \spadesuit

Proof that (Ω, μ) is complete

Fix a μ -Cauchy blip-seq $(\mathbf{y}^n)_{n=1}^{\infty}$. We will construct a blip \mathbf{b} st. $[\mu\text{-lim } \mathbf{y}^n] = \mathbf{b}$.

Proof. Courtesy (1a), ISTProve this convergence for some subsequence of $(\mathbf{y}^n)_{n=1}^{\infty}$. By (1b) we can drop to a subsequence (and renumber) so that now

$$4: \quad \text{For all } K \leq n: \quad \mu(\mathbf{y}^K, \mathbf{y}^n) < \frac{1}{2^K}.$$

Moreover, by (1a) we can replace each \mathbf{y}^n by a subblip —an (1b) says there are subblips so that

$$5: \quad \text{Diam}(\mathbf{y}^n) < \frac{1}{3^n}.$$

As our last preparation, enumerate \mathbf{y}^n as $(y_j^n)_{j=1}^{\infty}$.

A μ -limit of $(\mathbf{y}^n)_{n=1}^{\infty}$. Define a seq $\mathbf{b} = (b_n)_{n=1}^{\infty}$ by $b_n := y_n^n$. To see that \mathbf{b} is m -Cauchy, note that

$$\begin{aligned} m(b_{n-1}, b_n) &\leq m(b_{n-1}, y_n^{n-1}) + m(y_n^{n-1}, b_n) \\ &\leq \text{Diam}(\mathbf{y}^{n-1}) + \left[\frac{1}{4^n} + \mu(\mathbf{y}^{n-1}, \mathbf{y}^n) \right], \text{ by Property}[n], \\ &\leq \frac{1}{3^{n-1}} + \left[\frac{1}{4^n} + \frac{1}{2^{n-1}} \right], \quad \text{by (5) and (4).} \end{aligned}$$

This last sum is a summable function of n . Thus \mathbf{b} is m -Cauchy.

Establishing $\mathbf{y}^K \xrightarrow{\mu} \mathbf{b}$ as $K \nearrow \infty$. Fix K . For each $n > K$ note that

$$\begin{aligned} m(y_n^K, b_n) &\leq \frac{1}{4^n} + \mu(\mathbf{y}^K, \mathbf{y}^n), \quad \text{by Property}[n], \\ &\leq \frac{1}{4^n} + \frac{1}{2^K}, \quad \text{by (4),} \\ &\leq \frac{1}{2^{K-1}}, \quad \text{since } n > K. \end{aligned}$$

Sending $n \nearrow \infty$, then, gives $\mu(\mathbf{y}^K, \mathbf{b}) \leq \frac{1}{2^{K-1}}$. And this last number goes to zero as $K \nearrow \infty$. \spadesuit

Filename: Problems/Topology/complete^.latex
 As of: Sunday 06Sep2015. Typeset: 1Feb2022 at 19:43.